Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 308-315, 2022.
Article in English | WPRIM | ID: wpr-929295

ABSTRACT

Monoacylglycerol lipase (MAGL) is a pivotal enzyme in the endocannabinoid system, which metabolizes 2-arachidonoylglycerol (2-AG) into the proinflammatory eicosanoid precursor arachidonic acid (AA). MAGL and other endogenous cannabinoid (EC) degrading enzymes are involved in the fibrogenic signaling pathways that induce hepatic stellate cell (HSC) activation and ECM accumulation during chronic liver disease. Our group recently developed an 18F-labeled MAGL inhibitor ([18F]MAGL-4-11) for PET imaging and demonstrated highly specific binding in vitro and in vivo. In this study, we determined [18F]MAGL-4-11 PET enabled imaging MAGL levels in the bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver cirrhosis; we also assessed the hepatic gene expression of the enzymes involved with EC system including MAGL, NAPE-PLD, FAAH and DAGL that as a function of disease severity in these models; [18F]MAGL-4-11 autoradiography was performed to assess tracer binding in frozen liver sections both in animal and human. [18F]MAGL-4-11 demonstrated reduced PET signals in early stages of fibrosis and further significantly decreased with disease progression compared with control mice. We confirmed MAGL and FAAH expression decreases with fibrosis severity, while its levels in normal liver tissue are high; in contrast, the EC synthetic enzymes NAPE-PLD and DAGL are enhanced in these different fibrosis models. In vitro autoradiography further supported that [18F]MAGL-4-11 bound specifically to MAGL in both animal and human fibrotic liver tissues. Our PET ligand [18F]MAGL-4-11 shows excellent sensitivity and specificity for MAGL visualization in vivo and accurately reflects the histological stages of liver fibrosis in preclinical models and human liver tissues.

2.
Acta Pharmaceutica Sinica B ; (6): 1686-1695, 2021.
Article in English | WPRIM | ID: wpr-888829

ABSTRACT

As a serine hydrolase, monoacylglycerol lipase (MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS), leading to the formation of arachidonic acid (AA). Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms, including neuroinflammation, cognitive impairment, epileptogenesis, nociception and neurodegenerative diseases. Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions, and a MAGL positron emission tomography (PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors. Herein, we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates. Pharmacological evaluation of these candidates by activity-based protein profiling identified

3.
Acta Pharmaceutica Sinica B ; (6): 373-393, 2021.
Article in English | WPRIM | ID: wpr-881142

ABSTRACT

The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.

SELECTION OF CITATIONS
SEARCH DETAIL